This paper presents a real-time approach to detect and localize surrounding vehicles in urban driving scenes. We propose a multimodal fusion framework that processes both 3D LIDAR point cloud and RGB image to obtain robust vehicle position and size in a Bird's Eye View (BEV). Semantic segmentation from RGB images is obtained using our efficient Convolutional Neural Network (CNN) architecture called ERFNet. Our proposal takes advantage of accurate depth information provided by LIDAR and detailed semantic information processed from a camera. The method has been tested using the KITTI object detection benchmark. Experiments show that our approach outperforms or is on par with other state-of-the-art proposals but our CNN was trained in another dataset, showing a good generalization capability to any domain, a key point for autonomous driving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Detection and Localization using 3D LIDAR Point Cloud and Image Semantic Segmentation


    Beteiligte:
    Barea, Rafael (Autor:in) / Perez, Carlos (Autor:in) / Bergasa, Luis M. (Autor:in) / Lopez-Guillen, Elena (Autor:in) / Romera, Eduardo (Autor:in) / Molinos, Eduardo (Autor:in) / Ocana, Manuel (Autor:in) / Lopez, Joaquin (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    1945320 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Leveraging Smooth Deformation Augmentation for LiDAR Point Cloud Semantic Segmentation

    Qiu, Shoumeng / Chen, Jie / Lai, Chenghang et al. | IEEE | 2024

    Freier Zugriff

    POINT CLOUD SEGMENTATION USING A COHERENT LIDAR FOR AUTONOMOUS VEHICLE APPLICATIONS

    ARMSTRONG-CREWS NICHOLAS / CHEN MINGCHENG / HU XIAOXIANG | Europäisches Patentamt | 2022

    Freier Zugriff

    Point cloud segmentation using a coherent lidar for autonomous vehicle applications

    ARMSTRONG-CREWS NICHOLAS / CHEN MINGCHENG / HU XIAOXIANG | Europäisches Patentamt | 2025

    Freier Zugriff

    POINT CLOUD SEGMENTATION USING A COHERENT LIDAR FOR AUTONOMOUS VEHICLE APPLICATIONS

    ARMSTRONG-CREWS NICHOLAS / CHEN MINGCHENG / HU XIAOXIANG | Europäisches Patentamt | 2022

    Freier Zugriff

    Point cloud segmentation using a coherent lidar for autonomous vehicle applications

    ARMSTRONG-CREWS NICHOLAS / CHEN MINGCHENG / HU XIAOXIANG | Europäisches Patentamt | 2023

    Freier Zugriff