With the ubiquitous deployment of mobile sensors and smart devices, the scope of Internet of things (IoT) has extended to the space of mobile networks, where IoT terminals are moving around instead of being fixed in buildings, ground infrastructures, etc. In this paper, we consider such mobile Internet of things (MIoT), and propose an autonomous rate control (RC) scheme for the uplink transmission from MIoT terminals to access stations. A deep reinforcement learning (DRL) based approach is designed to capture the channel variations of the link and to improve the effectiveness of the rate selection for each egress frame. Extensive simulations are conducted for MIoT terminals including vehicles and UAVs and show significant throughput performance improvement comparing with traditional methods, as well as the robustness and scalability of the DRL-RC algorithm. The proposed DRL-RC can provide inspirations for efficient and scalable link adaptation schemes for MIoT terminals.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Rate Control for Mobile Internet of Things: A Deep Reinforcement Learning Approach


    Beteiligte:
    Xu, Wenchao (Autor:in) / Zhou, Haibo (Autor:in) / Cheng, Nan (Autor:in) / Lu, Ning (Autor:in) / Xu, Lijuan (Autor:in) / Qin, Meng (Autor:in) / Guo, Song (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1386148 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    AUTONOMOUS SPACECRAFT ATTITUDE CONTROL USING DEEP REINFORCEMENT LEARNING

    Elkins, Jacob / Sood, Rohan / Rumpf, Clemens | TIBKAT | 2021


    A Deep Reinforcement Learning-Based Approach for Autonomous Quadrotor Tracking Control

    Deng, Lan / Wang, Jiaqing / Jiang, Shuang et al. | Springer Verlag | 2024



    Deep Reinforcement Learning for Autonomous Traffic Light Control

    Garg, Deepeka / Chli, Maria / Vogiatzis, George | IEEE | 2018