The airline industry has bloomed greatly after the COVID-19. The customer satisfaction about the airlines is a key factor in the success of the airline industry. This study focuses on several aspects affecting the services of the airline and a comparative study is made by applying various algorithms like Gaussian Naive Bayes, Gradient Boosting Classifier, Linear Support Vector Machine, Logistic Regression, Multilayer Perceptron Classifier and Random Forest Classifier. The result of our analysis to predict the customer satisfaction as satisfied or unsatisfied shows that the Gradient Boosting Algorithm achieved an accuracy of 96 % and it is identified that the key feature of the analysis is the boarding process and Wi-Fi services.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exploratory Data Analysis and Prediction of Passenger Satisfaction with Airline services


    Beteiligte:


    Erscheinungsdatum :

    25.04.2024


    Format / Umfang :

    489762 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature Analysis on Airline Passenger Satisfaction using Orange Tool

    Keerthy, A S / Susan Mathew, Hannah | IEEE | 2022


    Advanced Technology in Airline Passenger Services

    Ensign, Richard P. | SAE Technical Papers | 1969


    Exploratory Data Analysis for Airline Disruption Management

    Ogunsina, Kolawole / Bilionis, Ilias / DeLaurentis, Daniel | ArXiv | 2021

    Freier Zugriff

    Airline Passenger Services: A Canadian Carrier Competitive Advantage?

    Baldwin, G. G. / Canadian Transportation Research Forum | British Library Conference Proceedings | 1992


    Airline passenger surveys

    Fitzgerald, G. | Engineering Index Backfile | 1952