Drowsiness in drivers is a common phenomenon often experienced by commuters. It is also a major contributor to the number of deaths in motor vehicle traffic incidents, causing around 1.6% deaths on US highways in 2021. To mitigate this, the development of a detection and alert system for drowsy drivers has received a steady influx of studies. A common approach to detect drowsiness in these systems utilizes visual cues that are then processed by computer vision technology. Most of these studies use PERCLOS (percentage closure of eyes), whose accuracy depends on categorizing eye states to determine the drowsiness level of a driver. This paper seeks to study the performance of 3 well-known deep learning models that could perform this task: MobileNetV2, EfficientNetB0, and NASNet Mobile. These models are then trained utilizing a subset of the MRL Eye dataset. Our team found that EfficientNet B0 performed the best out of all the other models in this task, achieving an average accuracy of 98.5%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Driver Drowsiness Detection Using NasNet Mobile, MobileNetV2, and EfficientNetB0




    Erscheinungsdatum :

    21.02.2024


    Format / Umfang :

    496504 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver Drowsiness Detection Using MobileNetV2 and Deep Learning

    Wagh, Dhiraj / Hire, Janhavi / Phad, Mayuri et al. | IEEE | 2024


    Driver Drowsiness Detection

    Satish, K. / Lalitesh, A. / Bhargavi, K. et al. | IEEE | 2020


    Driver drowsiness detection

    YANG HSIN-HSIANG / PRAKAH-ASANTE KWAKU O | Europäisches Patentamt | 2015

    Freier Zugriff

    Driver Drowsiness Detection

    Rezaei, Mahdi / Klette, Reinhard | Springer Verlag | 2017


    DRIVER DROWSINESS DETECTION

    YANG HSIN-HSIANG / PRAKAH-ASANTE KWAKU O | Europäisches Patentamt | 2015

    Freier Zugriff