In the realm of shared autonomous vehicle ride-sharing, the precise prediction is vital for optimizing resource allocation and improving travel efficiency. However, existing studies tend to overlook social attributes and demographic characteristics across various regions, resulting in disparities in prediction fairness between areas with plentiful and limited transportation resources. An innovative Social Graph Convolution Long Short-Term Memoty(SGC-LSTM) framework is proposed incorporating demographic, spatial, and transportation accessibility information into multiple functional graphs, including functional similarity, population structure, and historical demand graphs. Furthermore, fairness indicators are employed into the loss function to balance prediction accuracy and fairness, the findings indicate that there is an enhancement in both prediction accuracy and fairness by at least 8.9% and 11.1% respectively compared to base models. Furthermore, the predictions for rush hours in both privileged and underprivileged regions exhibit greater precision and rationality. The proposed framework could effectively capture the demands of diverse social groups, thereby contributing to the advancement of social equity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Ride-Hailing Demand with Consideration of Social Equity: A Case Study of Chengdu


    Beteiligte:
    Tu, Meiting (Autor:in) / Chen, Xinran (Autor:in) / Ji, Ang (Autor:in) / Shi, Tongtong (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    465346 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    RIDE-HAILING SYSTEM AND RIDE-HAILING METHOD

    KAMATA NOBUHIDE / UEHARA YASUO / TANIMORI SHUNSUKE et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    RIDE-HAILING SYSTEM, RIDE-HAILING METHOD, AND COMPUTER PROGRAM

    SAKAMOTO AKIRA | Europäisches Patentamt | 2024

    Freier Zugriff

    Usage Characteristics and Mode Choice Transitions of Ride-hailing Users in Chengdu, China

    Zhai, Guocong / Yang, Hongtai / Pan, Renbin et al. | IEEE | 2019


    RIDE-HAILING SERVICE MANAGEMENT DEVICE, RIDE-HAILING SERVICE MANAGEMENT METHOD, AND RIDE-HAILING SERVICE MANAGEMENT SYSTEM

    KUROSAWA TAKAYOSHI / WAKIMIZU MAKOTO / ADACHI HIROSHI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    RIDE-HAILING SERVICE MANAGEMENT DEVICE, RIDE-HAILING SERVICE MANAGEMENT METHOD, AND RIDE-HAILING SERVICE MANAGEMENT SYSTEM

    KUROSAWA TAKAYOSHI / WAKIMIZU MAKOTO / ADACHI HIROSHI et al. | Europäisches Patentamt | 2022

    Freier Zugriff