The paper explores a view-based approach to recognize free-form objects in range images. We are using a set of local features that are easy to calculate and robust to partial occlusions. By combining those features in a multidimensional histogram, we can obtain highly discriminant classifiers without the need for segmentation. Recognition is performed using either histogram matching or a probabilistic recognition algorithm. We compare the performance of both methods in the presence of occlusions and test the system on a database of almost 2000 full-sphere views of 30 free-form objects. The system achieves a recognition accuracy above 93% on ideal images, and of 89% with 20% occlusion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    3D object recognition from range images using local feature histograms


    Beteiligte:
    Hetzel, G. (Autor:in) / Leibe, B. (Autor:in) / Levi, P. (Autor:in) / Schiele, B. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    729156 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    3D Object Recognition from Range Images Using Local Feature Histograms

    Hetzel, G. / Leibe, B. / Levi, P. et al. | British Library Conference Proceedings | 2001


    3D Texture Recognition Using Bidirectional Feature Histograms

    Cula, O. G. / Dana, K. J. | British Library Online Contents | 2004


    Illumination-Invariant Color Object Recognition via Compressed Chromaticity Histograms of Color-Channel-Normalized Images

    Drew, M. S. / Wei, J. / Li, Z.-N. et al. | British Library Conference Proceedings | 1998