State-space recursive least-squares (SSRLS) is optimal a linear estimator for deterministic signals. The performance of SSRLS however, depends on model uncertainty, time-varying nature of the observed signal or nonstationary behavior of the observation noise. We incorporate stochastic gradient tuning of the forgetting factor to develop SSRLS with adaptive memory. This new algorithm addresses the limitations faced by standard SSRLS. An approximation of the actual filter, which alleviates the computational burden, is also derived. An example of tracking a noisy chirp signifies and demonstrates the overall capability and power of the new algorithm. It is expected that this new filter is able to track and estimate time-varying signals that are difficult to deal with the available tools.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    State-space recursive least-squares with adaptive memory


    Beteiligte:
    Malik, M.B. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    313147 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    State-Space Recursive Least-Squares with Adaptive Memory

    Malik, M. B. / IEEE | British Library Conference Proceedings | 2003


    Recursive Least-Squares Filtering

    Musoff, Howard / Zarchan, Paul | AIAA | 2009


    Recursive Least-Squares Filtering

    Musoff, Howard / Zarchan, Paul | AIAA | 2005


    Recursive Least-Squares Filtering

    Zarchan, Paul / Musoff, Howard | AIAA | 2015