We present a framework for texture recognition based on local affine-invariant descriptors and their spatial layout. At modelling time, a generative model of local descriptors is learned from sample images using the EM algorithm. The EM framework allows the incorporation of unsegmented multitexture images into the training set. The second modelling step consists of gathering co-occurrence statistics of neighboring descriptors. At recognition time, initial probabilities computed from the generative model are refined using a relaxation step that incorporates co-occurrence statistics. Performance is evaluated on images of an indoor scene and pictures of wild animals.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Affine-invariant local descriptors and neighborhood statistics for texture recognition


    Beteiligte:
    Lazebnik, (Autor:in) / Schmid, (Autor:in) / Ponce, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    1101205 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Affine-Invariant Local Descriptors and Neighborhood Statistics for Texture Recognition

    Lazebnik, S. / Schmid, C. / Ponce, J. et al. | British Library Conference Proceedings | 2003


    Illumination invariant optical flow using neighborhood descriptors

    Ali, Sharib / Daul, Christian / Galbrun, Ernest et al. | British Library Online Contents | 2016


    Illumination invariant optical flow using neighborhood descriptors

    Ali, Sharib / Daul, Christian / Galbrun, Ernest et al. | British Library Online Contents | 2016


    Affine invariant descriptors using principal components analysis

    Oirrak, A. | British Library Online Contents | 2008


    Ear biometric recognition using local texture descriptors

    Benzaoui, A. / Hadid, A. / Boukrouche, A. | British Library Online Contents | 2014