Disclosed are systems and methods for traffic pattern prediction under abnormal behavior through collaborative knowledge transferring from node to node. In one example, a system includes a processor and a memory having instructions that cause the processor to determine vehicle traffic flows at each of a plurality of nodes using a general model that utilizes hyperparameters that derive relationships between and within each node of the plurality of nodes and observed data from sensors monitoring the plurality of nodes. The observed data includes real-world traffic data affected by hidden parameters. Using an understandable algorithm, the general model derives correlations between the hidden parameters from the observed data at multiple levels.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    SYSTEMS AND METHODS FOR TRAFFIC PATTERN PREDICTION THROUGH COLLABORATIVE KNOWLEDGE TRANSFERRING FROM NODE TO NODE


    Beteiligte:
    MALHAN RAJESH (Autor:in) / BANDEGI MAHDI (Autor:in)

    Erscheinungsdatum :

    20.03.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS




    Increased Traffic Flow Through Node-Based Bottleneck Prediction and V2X Communication

    Backfrieder, Christian / Ostermayer, Gerald / Mecklenbrauker, Christoph F. | IEEE | 2017


    Few-Shot traffic prediction based on transferring prior knowledge from local network

    Yu, Lin / Guo, Fangce / Sivakumar, Aruna et al. | Taylor & Francis Verlag | 2023


    Network traffic marking and measurement methods and node

    CHEN ZHE / WANG CHUANG / YU DELEI | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic network traffic node importance identification method

    WANG QIULING / SHI PEIJU | Europäisches Patentamt | 2024

    Freier Zugriff