A method for generating training data for a machine learning model comprising: accessing a plurality of output values of a machine learning model computed in response to a plurality of input data samples; analyzing the plurality of output values and the plurality of input data samples to compute a plurality of required data sample characteristics associated with at least one unsatisfactory output value of the plurality of output values; generating at least one new input data sample by providing a data generator with a plurality of generation constraints comprising the plurality of required data sample characteristics; and adding the at least one new input data sample to a data repository for producing training data for the machine learning model; wherein the at least one new input data sample comprises at least part of a simulated driving environment for training the machine learning model to operate in an autonomous automotive system.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    MACHINE LEARNING MODEL GENERALIZATION


    Beteiligte:
    ATSMON DAN (Autor:in) / ATSMON ALON AVRAHAM (Autor:in)

    Erscheinungsdatum :

    28.11.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Generalization of the Lambertian Model and Implications for Machine Vision

    Oren, M. / Nayar, S. K. | British Library Online Contents | 1995


    Generalization of optimal motion trajectories for a biped walking machine based on machine learning

    Trautmann, Dietrich | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2015

    Freier Zugriff

    A Generalization of DEA Model

    Yun, Y. / Nakayama, H. / Tanino, T. | British Library Online Contents | 1999


    Experience generalization for multi-agent reinforcement learning

    Pegoraro, Renê / Costa, AHR / Ribeiro, CHC | BASE | 2001

    Freier Zugriff