This disclosure relates to methods and systems for vehicle simulation, testing, and validation. The method may include defining one or more test cases for a vehicle stack based on system requirements; linking the one or more test cases to one or more parameterized scenarios, where the one or more parameterized scenarios include one or more parameter permutations; and testing the vehicle stack using the one or more test cases and the one or more parameterized scenarios.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    COMPUTATIONALLY EFFICIENT, MACHINE LEARNING-BASED APPROACH TO IDENTIFY FAILURE CASES FOR AUTONOMOUS VEHICLE VALIDATION


    Beteiligte:
    HOU YIQI (Autor:in) / DION JUSTIN (Autor:in) / GROH ALEX (Autor:in) / HOANG KENNY (Autor:in) / ZHONG KIMBERLI (Autor:in)

    Erscheinungsdatum :

    21.12.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Computationally Efficient Autonomous Overtaking on Highways

    Karlsson, Johan / Murgovski, Nikolce / Sjoberg, Jonas | IEEE | 2020


    USING MACHINE LEARNING TO IDENTIFY A DEGRADATION STATE OF AN AUTONOMOUS AGRICULTURAL VEHICLE

    BUSE SCOTT M / CHANEY MARK M / CARSON JOSHUA J | Europäisches Patentamt | 2025

    Freier Zugriff


    Learning to identify safety-critical scenarios for an autonomous vehicle

    JAMES GUO MING FU / SCOTT D PENDLETON / YOU HONG ENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff