A traffic flow forecasting method based on Deep graph Gaussian processes includes: S1, with respect to the dynamics existing in a spatial dependency, using an attention kernel function to describe a dynamic dependency among vertices on a topological graph, and using the attention kernel function as a covariance function in an Aggregation Gaussian process to extract dynamic spatial features; S2, obtaining a Temporal convolutional Gaussian process from weights at different times and a convolution function that obeys the Gaussian processes, and obtaining temporal features in traffic data by combining the Aggregation Gaussian process; S3, constructing a Deep graph Gaussian process method integrating a Gaussian process and a depth structure from the Aggregation Gaussian process, the Temporal convolutional Gaussian process and a Gaussian process with a linear kernel function, inputting a data sample to be forecasted into the Deep graph Gaussian process method to obtain a forecasted result.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    TRAFFIC FLOW FORECASTING METHOD BASED ON DEEP GRAPH GAUSSIAN PROCESSES


    Beteiligte:
    JIANG YUNLIANG (Autor:in) / ZHANG XIONGTAO (Autor:in) / LOU JUNGANG (Autor:in) / FAN JINBIN (Autor:in) / SUN DANFENG (Autor:in) / LIANG RONGHUA (Autor:in)

    Erscheinungsdatum :

    23.02.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung




    Gaussian Processes for Short-Term Traffic Volume Forecasting

    Xie, Yuanchang / Zhao, Kaiguang / Sun, Ying et al. | Transportation Research Record | 2010



    Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting

    Hu, Yongli / Peng, Ting / Guo, Kan et al. | Wiley | 2023

    Freier Zugriff

    Urban Traffic Flow Forecasting Based on Graph Structure Learning

    Guangyu Huo / Yong Zhang / Yimei Lv et al. | DOAJ | 2024

    Freier Zugriff