Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using contrastive learning. One of the methods includes obtaining a network input representing an environment; processing the network input using a first subnetwork of the neural network to generate a respective embedding for each location in the environment; processing the embeddings for each location in the environment using a second subnetwork of the neural network to generate a respective object prediction for each location; determining, for each of a plurality of pairs of the plurality of locations in the environment, whether the respective object predictions of the pair of locations characterize the same possible object or different possible objects; computing a respective contrastive loss value for each of the plurality of pairs of locations; and updating values for a plurality of parameters of the first subnetwork using the computed contrastive loss values.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    CONTRASTIVE LEARNING FOR OBJECT DETECTION


    Beteiligte:

    Erscheinungsdatum :

    26.05.2022


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06K Erkennen von Daten , RECOGNITION OF DATA / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Contrastive learning for object detection

    AYVACI ALPER / CHEN FEIYU / ZHENG JUSTIN YU et al. | Europäisches Patentamt | 2023

    Freier Zugriff



    High Accuracy WiFi Sensing for Vital Sign Detection with Multi - Task Contrastive Learning

    Wang, Yilun / Cheng, Peng / Li, Shenghong et al. | IEEE | 2024


    CLOVER: Contrastive Learning for Onboard Vision-Enabled Robotics

    Vincent, Grace M. / Ward, Isaac R. / Moore, Charles et al. | AIAA | 2024

    Freier Zugriff