A method for recognizing multi-dimensional anomalous urban traffic events based on a ternary Gaussian mixture model includes: reading a data sample of urban road traffic events; randomly dividing the data sample into a first subsample and a second subsample; performing modeling based on the first subsample by using the ternary Gaussian mixture model to obtain a second ternary Gaussian mixture model to calculate a distribution probability p of any sample point; clustering the second subsample, recognizing an outlier in the second subsample, and labeling the outlier and a normal point to obtain a labeled subsample; calculating the labeled subsample to obtain the distribution probability p corresponding to each sample point in the labeled subsample; when a new traffic event occurs, obtaining features of three dimensions of the new traffic event, calculating a distribution probability p by using the second model, and recognizing the new traffic event as anomalous if p


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    METHOD FOR RECOGNIZING MULTI-DIMENSIONAL ANOMALOUS URBAN TRAFFIC EVENT BASED ON TERNARY GAUSSIAN MIXTURE MODEL


    Beteiligte:
    WU CHAOTENG (Autor:in) / ZHANG LU (Autor:in) / GAO XIAO (Autor:in) / ZHOU YU (Autor:in) / ZHAO WEI (Autor:in) / YANG XUECHEN (Autor:in)

    Erscheinungsdatum :

    17.03.2022


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Method for recognizing multi-dimensional anomalous urban traffic event based on ternary gaussian mixture model

    WU CHAOTENG / ZHANG LU / GAO XIAO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    MULTI-DIMENSIONAL URBAN TRAFFIC ANOMALY EVENT RECOGNITION METHOD BASED ON TERNARY GAUSSIAN MIXTURE MODEL

    WU CHAOTENG / ZHANG LU / GAO XIAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Vehicles detection in complex urban traffic scenes using Gaussian mixture model with confidence measurement

    Zhang, Yunsheng / Zhao, Chihang / He, Jie et al. | Wiley | 2016

    Freier Zugriff

    Vehicles detection in complex urban traffic scenes using Gaussian mixture model with confidence measurement

    Zhang, Yunsheng / Zhao, Chihang / He, Jie et al. | IET | 2016

    Freier Zugriff

    Real-Time Traffic Status Classification Based on Gaussian Mixture Model

    Liu, Xiong / Pan, Li / Sun, Xiaoliang | IEEE | 2016