A system and method for optimizing pre-departure sequencing instantiates independent agent processes for each aircraft. Each independent agent is trained via multi-agent reinforcement machine learning with an existing set of data to maximize that agent's individual reward within established bounds and while cooperating with each other agent. The interaction of the independent agents produces an optimized pre-departure sequence. The individual reward is defined with respect to a change between the current timestamp and the newly suggested timestamp. A lower delta results in a higher reward.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Pre-departure sequencing using multi-agent reinforcement learning


    Beteiligte:

    Erscheinungsdatum :

    13.05.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    PRE-DEPARTURE SEQUENCING USING MULTI-AGENT REINFORCEMENT LEARNING

    TYAGI SHIVANG / KUMAR BASA JNANA / CHANDRAHAS ROHIT | Europäisches Patentamt | 2024

    Freier Zugriff

    PRE-DEPARTURE SEQUENCING USING MULTI-AGENT REINFORCEMENT LEARNING

    KUMAR BASA JNANA VAMSI / CHANDRAHAS ROHIT / TYAGI SHIVANG | Europäisches Patentamt | 2024

    Freier Zugriff


    Multi-Agent Deep Reinforcement Learning for Mix-mode Runway Sequencing

    Limin, Shi / Due-Thinh, Pham / Alam, Sameer | IEEE | 2022


    Deep Reinforcement Learning Based Airport Departure Metering

    Ali, Hasnain / Thinh, Pham Duc / Alam, Sameer | IEEE | 2021