An approach to forecasting battery health as a dynamic time-series problem as opposed to a static prediction problem is presented. Systems and methods disclosed herein forecast a trajectory to failure by predicting a path to failure as opposed to only predicting when the battery may fail. A machine-learning model is implemented that extracts unique features taken from time-series data, such as time snippets of charging data. The raw time-series data may include current voltage and temperature with complex transformations and without capturing a full cycle, which permits wider applicability to instances of varying depth of discharge (DoD).


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    System and method for forecasting battery state with imperfect data


    Beteiligte:

    Erscheinungsdatum :

    26.11.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G07C TIME OR ATTENDANCE REGISTERS , Zeit- oder Anwesenheitskontrollgeräte / B60L PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES , Antrieb von elektrisch angetriebenen Fahrzeugen / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / H01M Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie , PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY



    SYSTEM AND METHOD FOR FORECASTING BATTERY STATE WITH IMPERFECT DATA

    TEO LINNETTE / BALAJI GOPAL CHIRRANJEEVI | Europäisches Patentamt | 2022

    Freier Zugriff

    Battery System State of Health Forecasting

    von Bülow, Friedrich | Springer Verlag | 2024


    Battery Cell State of Health Forecasting

    von Bülow, Friedrich | Springer Verlag | 2024


    Transfer of Battery Cell State of Health Forecasting

    von Bülow, Friedrich | Springer Verlag | 2024


    MISO Secure Transmission with Imperfect Channel State Information

    Song, Huanhuan / Wen, Hong / Hu, Lin et al. | IEEE | 2017