A method for self-supervised depth and ego-motion estimation is described. The method includes determining a multi-camera photometric loss associated with a multi-camera rig of an ego vehicle. The method also includes generating a self-occlusion mask by manually segmenting self-occluded areas of images captured by the multi-camera rig of the ego vehicle. The method further includes multiplying the multi-camera photometric loss with the self-occlusion mask to form a self-occlusion masked photometric loss. The method also includes training a depth estimation model and an ego-motion estimation model according to the self-occlusion masked photometric loss. The method further includes predicting a 360° point cloud of a scene surrounding the ego vehicle according to the depth estimation model and the ego-motion estimation model.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Self-occlusion masks to improve self-supervised monocular depth estimation in multi-camera settings


    Beteiligte:

    Erscheinungsdatum :

    16.01.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06T Bilddatenverarbeitung oder Bilddatenerzeugung allgemein , IMAGE DATA PROCESSING OR GENERATION, IN GENERAL / B60R Fahrzeuge, Fahrzeugausstattung oder Fahrzeugteile, soweit nicht anderweitig vorgesehen , VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / H04N PICTORIAL COMMUNICATION, e.g. TELEVISION , Bildübertragung, z.B. Fernsehen



    SELF-OCCLUSION MASKS TO IMPROVE SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION IN MULTI-CAMERA SETTINGS

    GUIZILINI VITOR / AMBRUS RARES ANDREI / GAIDON ADRIEN DAVID et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Real-Time Self-Supervised Monocular Depth Estimation Without GPU

    Poggi, Matteo / Tosi, Fabio / Aleotti, Filippo et al. | IEEE | 2022


    EDS-Depth: Enhancing Self-Supervised Monocular Depth Estimation in Dynamic Scenes

    Yu, Shangshu / Wu, Meiqing / Lam, Siew-Kei et al. | IEEE | 2025


    LAM-Depth: Laplace-Attention Module-Based Self-Supervised Monocular Depth Estimation

    Wei, Jiansheng / Pan, Shuguo / Gao, Wang et al. | IEEE | 2024


    PHOTOMETRIC MASKS FOR SELF-SUPERVISED DEPTH LEARNING

    GUIZILINI VITOR | Europäisches Patentamt | 2024

    Freier Zugriff