A system includes a machine learning engine configured to receive training data including a plurality of input conditions associated with a state space and a plurality of response maneuvers associated with the state space and train a learning system using the training data and a reward function including a plurality of terms associated with a plurality of end state spaces, each term in the plurality of terms defines an end reward value for each end state space. A value function and policy are generated. The value function comprising a plurality of values, wherein each response maneuvers in the plurality of response maneuvers is associated with a value in the plurality of values related to transitioning from the state space to each end state space, the policy indicative of connections between the state spaces, plurality of values, and the respective end reward value for the plurality of end state spaces.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Systems and methods for practical autonomy decision controller


    Beteiligte:
    BERTRAM JOSHUA R (Autor:in) / MCLEAN ANGUS L (Autor:in) / ROUP ALEXANDER (Autor:in) / MCELHENNY IAN (Autor:in)

    Erscheinungsdatum :

    31.08.2021


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / B64C AEROPLANES , Flugzeuge



    Safe and secure practical autonomy

    BERTRAM JOSHUA R / WOLFORD BRIAN R / MCLEAN ANGUS L et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Systems Research for Practical Autonomy in Unmanned Air Vehicles

    Smith, Phill / Willcox, Simon | AIAA | 2005


    Systems Autonomy

    H. Lum | NTIS | 1988