The invention relates to a computer implemented method for target selection in the vicinity of a vehicle. In step 210, the method 200 obtains vehicle state information. In step 220 then a machine-learning algorithm is performed to predict a first trajectory of the vehicle based on the vehicle state information for a first prediction time horizon. The prediction is put out in step 230. In step 240, state information from road users different from the vehicle are obtained. In step 250 a machine-learning algorithm is performed on the road users state information and the vehicle state information to predict a second trajectory of vehicle for the first prediction time horizon. The prediction is put out in step 260. Then, in step 265, a first similarity comparison is performed based on the first predicted trajectory of the vehicle as put out in step 230 and the second predicted trajectory of the vehicle as put out in step 260 to determine whether the road users are a potential target of the vehicle for the first prediction time horizon. In step 270, state information from only one road user, i.e. a first road user, is used as input together with the vehicle state information, on which the machine -learning algorithm is performed in step 280 to predict a third trajectory of the vehicle for the first prediction time horizon, which is put out at 290. Then, in step 295, a second similarity comparison is performed based on the second predicted trajectory of the vehicle as put out in step 260 and the third predicted trajectory of the vehicle as put out in step 290 to determine whether the one road user is a potential target of the vehicle for the first prediction time horizon. This is done based on a relevance threshold previously determined based on first similarity comparison of step 265. These last four steps 270, 280, 290 and 295 may then be repeated based on state information of another one of the road users, i.e. a second, a third and/or a fourth road user together with the vehicle state information to perform a third and/or a fourth similarity comparison.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    METHOD, COMPUTER SYSTEM AND NON-TRANSITORY COMPUTER READABLE MEDIUM FOR TARGET SELECTION IN THE VICINTY OF A VEHICLE


    Weitere Titelangaben:

    VERFAHREN, COMPUTERSYSTEM UND NICHTFLÜCHTIGES COMPUTERLESBARES MEDIUM ZUR ZIELAUSWAHL IN DER NÄHE EINES FAHRZEUGS
    PROCÉDÉ, SYSTÈME INFORMATIQUE ET SUPPORT LISIBLE PAR ORDINATEUR NON TRANSITOIRE POUR LA SÉLECTION DE CIBLE DANS LE VOISINAGE D'UN VÉHICULE


    Beteiligte:
    ZHAO KUN (Autor:in) / SCHAEFER MAXIMILIAN (Autor:in) / BUEHREN MARKUS (Autor:in)

    Erscheinungsdatum :

    02.08.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    METHOD, COMPUTER SYSTEM AND NON-TRANSITORY COMPUTER READABLE MEDIUM FOR TARGET SELECTION IN THE VICINITY OF A VEHICLE

    ZHAO KUN / SCHAEFER MAXIMILIAN / BUEHREN MARKUS | Europäisches Patentamt | 2024

    Freier Zugriff

    Method, Computer System and Non-Transitory Computer Readable Medium for Target Selection in the Vicinity of a Vehicle

    ZHAO KUN / SCHAEFER MAXIMILIAN / BUEHREN MARKUS | Europäisches Patentamt | 2023

    Freier Zugriff

    Computer-implemented method, vehicle and non-transitory computer-readable medium

    WU NING / ANDERSSON HAKAN / SECCAMONTE FRANCESCO | Europäisches Patentamt | 2022

    Freier Zugriff

    VEHICLE, DETERMINATION METHOD, AND NON-TRANSITORY COMPUTER-READABLE MEDIUM

    TONG FANGWEI | Europäisches Patentamt | 2020

    Freier Zugriff

    Non-transitory computer readable medium

    NAGATA YU / HASHIMOTO SHUN / YAMAZAKI KOTA et al. | Europäisches Patentamt | 2024

    Freier Zugriff