Systems, methods, and computer-readable storage media for training a Recurrent Neural Network to evaluate sensor data related to a brake rotor, then diagnosing brake rotors using sensor data and the trained Recurrent Neural Network. Sensor data can include audio data, temperature data, caliper pressure data, and/or any other data related to operation of the brake rotor being evaluated. When a processor is configured to execute the trained Recurrent Neural Network, sensor inputs can be provided to the processor, with the output being a diagnosis of the brake rotor state.
COMMERCIAL VEHICLES ROTOR CRACKING PREDICTION USING RECURRENT NEURAL NETWORK
ROTORRISSVORHERSAGE FÜR NUTZFAHRZEUGE UNTER VERWENDUNG EINES REKURRENTEN NEURONALEN NETZWERKS
PRÉDICTION DE CRAQUAGE DE ROTOR DE VÉHICULES UTILITAIRES À L'AIDE D'UN RÉSEAU NEURONAL RÉCURRENT
19.07.2023
Patent
Elektronische Ressource
Englisch
COMMERCIAL VEHICLES ROTOR CRACKING PREDICTION USING RECURRENT NEURAL NETWORK
Europäisches Patentamt | 2023
|COMMERCIAL VEHICLES ROTOR CRACKING PREDICTION USING RECURRENT NEURAL NETWORK
Europäisches Patentamt | 2022
|Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural Network
ArXiv | 2017
|Improvement of Aeroelastic Vehicles Performance Through Recurrent Neural Network Controllers
BASE | 2016
|SAGE Publications | 2019
|