The invention discloses a spatial-temporal feature extraction method based on traffic data, which belongs to the technical field of traffic flow analysis and comprises the following steps: acquiring traffic data over the years and preprocessing the traffic data to obtain preprocessed data; constructing a spatial-temporal feature extraction model, and capturing the dynamic change and trend features of the traffic flow in the preprocessed data based on the spatial-temporal feature extraction model; constructing an initial traffic flow prediction model, and training the traffic flow prediction model based on the dynamic change and trend characteristics of the traffic flow to obtain a traffic flow prediction model; and performing traffic flow prediction based on the real-time traffic data and the traffic flow prediction model to obtain a traffic flow prediction result. By combining the advantages of the convolutional neural network and the recurrent neural network, the spatial-temporal characteristics of the traffic data are effectively extracted, the prediction precision of the traffic flow is improved, and the method has significant effects on guiding urban traffic planning and management and reducing traffic congestion.

    本发明公开了一种基于交通数据的时空特征提取方法,属于交通流量分析技术领域,包括以下步骤:获取历年交通数据并进行预处理,得到预处理数据;构建时空特征提取模型,基于时空特征提取模型捕获预处理数据中交通流的动态变化和趋势特征;构建初始车流量预测模型,基于交通流的动态变化和趋势特征对车流量预测模型进行训练,获得车流量预测模型;基于实时交通数据和车流量预测模型进行车流量预测,得到车流量预测结果。本发明通过结合卷积神经网络和循环神经网络的优势,有效提取了交通数据的时空特征,提高了交通流量的预测精度,对于指导城市交通规划和管理,减少交通拥堵具有显著效果。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Spatial and temporal feature extraction method based on traffic data


    Weitere Titelangaben:

    一种基于交通数据的时空特征提取方法


    Beteiligte:
    XIAO HONGBO (Autor:in) / XIAO JIANHUA (Autor:in) / DING LIMING (Autor:in) / MI CHUNQIAO (Autor:in) / DENG XIAOWU (Autor:in)

    Erscheinungsdatum :

    06.12.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06V / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G06T Bilddatenverarbeitung oder Bilddatenerzeugung allgemein , IMAGE DATA PROCESSING OR GENERATION, IN GENERAL / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Traffic signal control method based on spatial-temporal feature extraction and reinforcement learning

    LI JINGLIN / WEI XIAOJUAN / YUAN QUAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Full-period traffic flow prediction method based on spatial-temporal feature deep fusion

    ZHAO ZHONGNAN / XIE XU / WANG YUE | Europäisches Patentamt | 2025

    Freier Zugriff

    Spatial-temporal traffic congestion identification and correlation extraction using floating car data

    Chen, Yanyan / Chen, Cong / Wu, Qiong et al. | Taylor & Francis Verlag | 2021


    Traffic flow prediction method and device based on local-global spatial-temporal feature fusion

    ZONG XINLU / CHEN ZHEN / WANG CHUNZHI et al. | Europäisches Patentamt | 2023

    Freier Zugriff