The invention discloses an elevator traction machine fault diagnosis algorithm based on multi-source information fusion, and the algorithm comprises the following steps: collecting the vibration signal data of a multi-source sensor under a specific fault and a normal working condition, and carrying out the denoising processing through an improved adaptive filter, so as to improve the data quality; decomposing the denoised vibration signal into a plurality of intrinsic mode functions by using an empirical mode decomposition technology; the method comprises the following steps: constructing a multi-scale time sequence, calculating a sample entropy of each scale, and obtaining a multi-scale entropy vector of a single intrinsic mode function; on this basis, calculating a covariance matrix of a multi-scale entropy vector, extracting principal components, and selecting the first several principal components with the highest contribution rate as a fusion result; and inputting the tractor signal data with the label into a support vector machine, carrying out supervised learning training, and carrying out pattern recognition and classification on the fused signal data by utilizing a trained model. Through effective fusion of multi-source information, the precision and efficiency of fault diagnosis of the elevator traction machine are remarkably improved, and the method has wide application prospects and important practical significance.

    本发明公开了一种基于多源信息融合的电梯曳引机故障诊断算法,包括以下步骤:采集特定故障及正常工况下的多源传感器振动信号数据,并应用改进的自适应滤波器进行去噪处理,以提高数据质量;利用经验模态分解技术,将去噪后的振动信号分解为多个固有模态函数;通过构建多尺度时间序列,计算每个尺度的样本熵,获得单个固有模态函数的多尺度熵向量;在此基础上,计算多尺度熵向量的协方差矩阵,提取主成分,并选择贡献率最高的前几个主成分作为融合结果;将带有标签的曳引机信号数据输入至支持向量机中,进行监督学习训练,利用训练好的模型对融合后的信号数据实施模式识别与分类。本发明通过多源信息的有效融合,显著提升了电梯曳引机故障诊断的精度和效率,具有广泛的应用前景和重要的实际意义。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Elevator traction machine fault diagnosis algorithm based on multi-source information fusion


    Weitere Titelangaben:

    基于多源信息融合的电梯曳引机故障诊断算法


    Beteiligte:
    SONG YONGXING (Autor:in) / ZHANG TONGHE (Autor:in) / ZHAO YANJIE (Autor:in) / LI DONGYANG (Autor:in) / LIU QIANG (Autor:in) / YU MING (Autor:in) / GE YI (Autor:in) / ZHANG CHAO (Autor:in) / LIU JIZHOU (Autor:in)

    Erscheinungsdatum :

    03.12.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    B66B Aufzüge , ELEVATORS



    Elevator traction machine bearing fault diagnosis method

    ZHANG YUEHONG / YUAN ZHAOCHENG / ZHENG QING et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Elevator safety fault diagnosis method based on multi-source information fusion

    ZHANG QIANG / MA ZHONGJUN / TIAN YING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    ELEVATOR SAFETY FAULT DIAGNOSIS METHOD BASED ON MULTI-SOURCE INFORMATION FUSION

    ZHANG QIANG / MA ZHONGJUN / TIAN YING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traction elevator fault diagnosis based on CNN and IAO-SVM

    LI KUN / YUAN YICHEN | Europäisches Patentamt | 2024

    Freier Zugriff

    Elevator traction machine

    ZHOU XIAOXUE / NI MINHUA | Europäisches Patentamt | 2020

    Freier Zugriff