The invention relates to the technical field of traffic signal control, and particularly discloses a self-adaptive traffic signal control method based on reinforcement learning and a self-attention mechanism, and the method comprises the steps: building a Markov decision process model and a strategy neural network based on a deep reinforcement learning algorithm; the method comprises the following steps: establishing a deep Q network and a self-attention mechanism based on a Markov decision process model, evaluating a strategy, updating a strategy neural network and neural networks of an encoder and a decoder, carrying out iterative training on the neural networks for multiple times to obtain a trained neural network model, and according to the trained neural network model, obtaining a self-attention mechanism. According to the algorithm, real-time traffic signal control signals are generated, optimal strategies can be learned step by step in complex traffic flows, in addition, the algorithm adopts an encoder-decoder structure, historical tracks are stored in a playback buffer, and parameters are updated through near-end strategy optimization. The problem that an existing adaptive traffic signal control method needs a large amount of data and a large amount of computing resources due to training is solved.

    本发明涉及交通信号控制技术领域,具体公开了基于强化学习与自注意力机制的自适应交通信号控制方法,所述方法包括基于深度强化学习算法建立马尔科夫决策过程模型以及策略神经网络,基于马尔科夫决策过程模型搭建深度Q网络以及自注意力机制,对策略进行评估并对策略神经网络、编码器和解码器的神经网络进行更新,对神经网络进行多次迭代训练,得到训练后的神经网络模型,根据训练后的神经网络模型,生成实时交通信号控制信号,能够在复杂的交通流中逐步学习最优策略,此外,这种算法采用编码器‑解码器结构,将历史轨迹存储在重放缓冲区中,并使用近端策略优化来更新参数。解决了现有自适应交通信号控制方法由于训练需要大量数据并且需要大量计算资源的难题。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Adaptive traffic signal control method based on reinforcement learning and self-attention mechanism


    Weitere Titelangaben:

    基于强化学习与自注意力机制的自适应交通信号控制方法


    Beteiligte:
    ZHAO RUI (Autor:in) / HU HAOFENG (Autor:in) / FAN YUZE (Autor:in) / GAO FEI (Autor:in) / GAO ZHENHAI (Autor:in)

    Erscheinungsdatum :

    12.11.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Deep reinforcement learning traffic signal control method based on attention mechanism

    WU JIANGUANG / ZHOU SHUYA / HOU XIANGDONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Self-adaptive traffic signal control method based on graph deep reinforcement learning

    ZHAO ZHONGNAN / WANG KUN / SONG XIN | Europäisches Patentamt | 2022

    Freier Zugriff

    Deep reinforcement learning traffic signal decision system and method based on attention mechanism

    WU JIANGUANG / ZHOU SHUYA / HOU XIANGDONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Signal lamp control system and method based on reinforcement learning and self-attention mechanism

    SUN WEIWEI / QIN MINHAO | Europäisches Patentamt | 2024

    Freier Zugriff

    Adaptive traffic signal control method based on CQL offline reinforcement learning

    PI JIATIAN / YANG XINMIN / WU CHANGZHI | Europäisches Patentamt | 2023

    Freier Zugriff