The invention discloses a traffic speed prediction method based on a multi-space-time diagram fusion convolutional network. The method is characterized by comprising the following steps: receiving a prediction request and collecting data; processing the collected data into a standardized data set according to the collected data; generating a meta-graph according to the standardized data set; obtaining a space-time fusion graph by using the generated meta graph; and according to the obtained space-time fusion image, inputting the space-time fusion image into a stacking layer through a full-connection layer, and obtaining a prediction result through two full-connection layers after stacking multiple layers. According to the method, the defects of an existing traffic speed prediction method are overcome, the spatial-temporal correlation is captured at the same time through one module, and the relation between the local spatial-temporal correlation and the global spatial-temporal correlation is captured through the multi-graph fusion convolution module and the gating multi-branch convolution module. In addition, according to the algorithm model based on the multi-space-time diagram fusion convolutional network, the calculation complexity is effectively reduced, and the accuracy of the prediction result is improved.

    本发明公开了一种基于多时空图融合卷积网络的交通速度预测方法,其特征在于:包括接收预测请求并采集数据;根据采集的数据,将其处理成标准化的数据集;根据标准化的数据集生成元图;利用生成的元图得到时空融合图;根据得到的时空融合图,经全连接层输入到堆叠层,经过堆叠多层后通过两层全连接层得到预测结果。本发明解决了现有交通速度预测方法的不足,利用一个模块同时捕获时空相关性,并且分别利用多图融合卷积模块和门控多分支卷积模块来捕获局部和全局的时空相关性之间的关系。此外,本发明根据基于多时空图融合卷积网络的算法模型,有效降低了的计算复杂度并提高了预测结果的准确度。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Traffic speed prediction method based on multi-space-time diagram fusion convolutional network


    Weitere Titelangaben:

    一种基于多时空图融合卷积网络的交通速度预测方法


    Beteiligte:
    GU ZHAOLING (Autor:in) / ZHANG ANQIN (Autor:in) / CHEN JINGJING (Autor:in)

    Erscheinungsdatum :

    12.09.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Traffic flow prediction method based on multi-space-time diagram convolutional network

    SHI QUAN / DAI JUNMING / SHEN QINQIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic flow speed prediction method based on attention space-time diagram convolutional network

    SUN YONG / ZHANG ANQIN / CHEN JINGJING | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction method based on space-time diagram convolutional network

    JIANG YUNLIANG / XIA RENHUAN / ZHANG XIONGTAO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic flow prediction method based on space-time diagram convolutional network

    JIANG CONG / SONG YUN / DENG ZELIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction method of space-time diagram convolutional network

    TENG FEI / WANG ZIDAN / QIAO LU et al. | Europäisches Patentamt | 2024

    Freier Zugriff