The invention is applicable to the technical field of intelligent traffic, provides a real-time traffic speed prediction method and system based on a graph convolutional network, and aims to construct a spatial graph and a semantic graph, divide the spatial graph and the semantic graph into a global dimension and a local dimension as the input of a model, and predict the traffic speed in real time. The multi-level capture of global information and local information in the whole traffic topological graph is realized, the similarity between nodes can be conveniently fused into the algorithm, the model optimization is facilitated, and the algorithm performance is improved.

    本发明适用智能交通技术领域,提供了一种基于图卷积网络的交通速度实时预测方法及系统,本方法的目的在于通过构建空间图和语义图,并将空间图和语义图分为全局和局部两个维度作为模型的输入,实现了对整个交通拓扑图中全局信息和局部信息的多层次捕获,便于将节点间的相似性融入算法中,有利于优化模型,提高算法性能。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Traffic speed real-time prediction method and system based on graph convolutional network


    Weitere Titelangaben:

    一种基于图卷积网络的交通速度实时预测方法及系统


    Beteiligte:
    KANG TING (Autor:in)

    Erscheinungsdatum :

    29.08.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES



    Spatial–Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction

    Xu, Xuran / Zhang, Tong / Xu, Chunyan et al. | IEEE | 2023




    Traffic speed prediction method based on time-space gated graph convolutional network and application thereof

    LI KAIMIN / ZHANG DONGPING / LEE SUNG-KWON et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction method based on graph convolutional network

    XU HUI / MENG FANYU / REN QIANQIAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff