The invention proposes a traffic flow real-time prediction method based on a dynamic graph neural network, and the method comprises the steps: arranging a plurality of sensors at preset positions at two sides of a road, and numbering each sensor through a node, and comprises the steps: collecting the traffic flow monitoring data of the sensors; acquiring speed change data of a sensor according to the traffic flow monitoring data, and generating a characteristic matrix of sensor nodes according to a preset format by using the speed change data; according to the position of each sensor and the feature matrix, constructing an adjacent matrix of nodes; according to the adjacent matrix, a dynamic graph convolutional network model is designed and trained, and the dynamic graph convolutional network model comprises a spatial feature extraction component and a time feature extraction component; and obtaining the latest traffic flow monitoring data, inputting the latest traffic flow monitoring data into the dynamic graph convolutional network model, and obtaining the traffic speed flow at the next interval moment. Through the method provided by the invention, the future road condition can be predicted.

    本发明提出一种基于动态图神经网络的交通流实时预测方法,包括在公路两侧预定位置布置多个传感器,并对每个传感器用节点进行编号,包括步骤:收集传感器的交通流监测数据;根据交通流监测数据获取传感器的速度变化数据,将速度变化数据按照预定格式生成传感器节点的特征矩阵;根据每个传感器的位置、特征矩阵构建节点的邻接矩阵;根据邻接矩阵,设计并训练动态图卷积网络模型,动态图卷积网络模型包括空间特征提取组件和时间特征提取组件;获取最新的交通流监测数据,将最新的交通流监测数据输入动态图卷积网络模型,获取下一间隔时刻的交通速度流。通过本发明的方法,可以对未来的路况进行预测。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Traffic flow real-time prediction method and device based on dynamic graph neural network


    Weitere Titelangaben:

    基于动态图神经网络的交通流实时预测方法及装置


    Beteiligte:
    REN XIANGSHENG (Autor:in) / CEN YUKUO (Autor:in)

    Erscheinungsdatum :

    28.03.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Traffic flow prediction method based on dynamic graph neural network

    XU GUANGXIA / HU XINTING / CHEN LANG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic flow space-time prediction method based on graph neural network

    ZHAO SHENGJIE / CHEN ZIXUAN / ZENG JIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method and device based on dynamic ordinary differential graph neural network

    DU SHENGDONG / YANG TAO / HU JIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method based on graph neural network

    PENG LAIHU / WU BAOWEN / QI YUBAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method and device based on space-time attention graph neural network

    HUANG WENBING / YUAN JIRUI / TIAN CHUJIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff