A simulation system for rendezvous and docking of a spacecraft comprises a horizontal support module, a target six-degree-of-freedom air bearing table, a tracking six-degree-of-freedom air bearing table, a master control module, and a monitor and display module. Actual features of weight and quality of a rendezvous and docking spacecraft can be simulated by six-degree-of-freedom air bearing tables, a six-degree-of-freedom test on a last translation closing stage can be carried out depending on actual rendezvous and docking spacecraft-mounted devices such as a docking mechanism. Compared with the prior art, in the simulation system, an indoor GPS unit module can measure positions and attitudes and transmit to the master control module and the monitor and display module in real time, the rendezvous and docking process of a spacecraft can be visually, accurately and real controlled and simulated, and the success rate of a simulation test can be raised. In addition, the simulation system can verify the rationality of a work sequence during the rendezvous and docking process of the spacecraft, the reliability and validity of the rendezvous and docking process of the spacecraft can be improved.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Simulation system for rendezvous and docking of spacecraft


    Beteiligte:
    JIA YONG (Autor:in) / XU XIYUE (Autor:in) / TANG LIANG (Autor:in) / MOU XIAOGANG (Autor:in) / ZHU ZHIBIN (Autor:in) / HAO YONGBO (Autor:in)

    Erscheinungsdatum :

    02.12.2015


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    B64G Raumfahrt , COSMONAUTICS



    Autonomous spacecraft rendezvous and docking

    Tietz, J. C. / Almand, B. J. | NTRS | 1985


    Spacecraft rendezvous and docking techniques

    SCHWARZ ROBERT ERIK / LYMER JOHN DOUGLAS | Europäisches Patentamt | 2021

    Freier Zugriff

    Automated Rendezvous and Docking of Spacecraft

    Kemble, Stephen | Online Contents | 2007