The invention discloses a passenger transport mode node transfer impedance determination method for a comprehensive traffic network. Firstly, the method divides passenger transport mode node transfer impedance of a comprehensive traffic network into four large classes and twelve subclasses, respectively being [transfer time impedance of road-railway, navigation channel, and air line], [transfer time impedance of railway-road, navigation channel, and air line], [transfer time impedance of navigation channel-railway, road, and air line], and [transfer time impedance of railway, navigation channel, and road]. According to node transfer time composition and passenger transfer characteristics, a passenger transport mode node transfer impedance function model of the comprehensive traffic network is determined, wherein various modes of transfer traffic impedance composition parameters are acquired by traffic investigation and statistics. The method fills the gap in node transfer impedance research in comprehensive traffic demand forecasting in China, and provides critical theoretical support for traffic volume conversion and distribution on nodes of the comprehensive traffic network, and has very wide application prospect.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Passenger transport mode node transfer impedance determination method for comprehensive traffic network


    Beteiligte:
    LI XIAOWEI (Autor:in) / WANG WEI (Autor:in) / WANG HAO (Autor:in) / HUA XUEDONG (Autor:in) / WANG BAOJIE (Autor:in)

    Erscheinungsdatum :

    02.09.2015


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung






    Selection Conditions Analysis of Passenger Transport Mode for Fast Passenger Network

    Zhang, Qiangfeng / Ni, Shaoquan / Chen, Dong et al. | Springer Verlag | 2018