The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space disturbance torques and gyro drifts.
For the satellite attitude dynamics with Lipschitz constraint, a multi-objective nonlinear unknown input observer (NUIO) is explored to accomplish robust actuator fault isolation based on a synthesis of Hinf techniques and regional pole assignment technique. Subsequently, a novel disturbance-decoupling learning observer (D2LO) is proposed to identify the isolated actuator fault accurately. Additionally, the design of the NUIO and the D2LO are reformulated into convex optimization problems involving linear matrix inequalities (LMIs), which can be readily solved using standard LMI tools.
The simulation studies on a microsatellite example are performed to prove the effectiveness and applicability of the proposed robust actuator fault isolation and identification methodologies.
This research includes implications for the enhancement of reliability and safety of on-orbit microsatellites.
This study proposes novel NUIO-based robust fault isolation and D2LO-based robust fault identification methodologies for spacecraft ACSs subject to a series of space disturbance torques and gyro drifts.
Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems
Aircraft Engineering and Aerospace Technology ; 93 , 7 ; 1145-1155
14.08.2021
1 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Observer-Based Attitude Control for Satellite Under Actuator Fault
Online Contents | 2015
|Robust control of the SMART microsatellite attitude dynamics
British Library Conference Proceedings | 2000
|Robust Control of the Smart Microsatellite Attitude Dynamics
Online Contents | 2000
|