Abstract This paper addresses the electromagnetic separation problem for mass-unknown spacecraft in elliptical orbits that play a significant role in on-orbit assembly and other future space missions. First, the relative motion dynamics model between the platform (target spacecraft) and module (chaser spacecraft) is presented with the lumped disturbance resulting from external disturbances, elliptical eccentricity and unknown mass, and a compliant reference trajectory is designed by applying the idea of trigonometric-function. Then, an improved sliding mode controller is developed to ensure that the tracking errors of relative motion can converge to near the equilibrium point. In order to avoid adverse impacts, the elliptical eccentricity and unknown mass are fully considered by using the developed control approach, and the global asymptotic stability of the closed-loop system is analyzed by strict theoretical proof. Combined with spacecraft electromagnetic docking technology, the electromagnetic separation scheme can make on-orbit assembly easy to achieve with certain advantages, e.g., it doesn’t consume propellant and thus doesn’t cause plume contamination, and has reversible, continuous and non-contact characteristics. Finally, numerical simulations are performed to illustrate the effectiveness and feasibility of the developed control approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved sliding mode tracking control for spacecraft electromagnetic separation supporting on-orbit assembly


    Beteiligte:
    Liu, Chuang (Autor:in) / Ma, Yiqing (Autor:in) / Yue, Xiaokui (Autor:in) / Shi, Keke (Autor:in)

    Erschienen in:

    Advances in Space Research ; 73 , 9 ; 4711-4720


    Erscheinungsdatum :

    2024-01-17


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improved Adaptive Sliding Mode Control for Rigid Spacecraft Attitude Tracking

    Cong, Binglong / Chen, Zhen / Liu, Xiangdong | ASCE | 2012


    Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode

    Zhang, Jinghui / Zeng, Guoqiang / Gao, Yudong | Springer Verlag | 2021


    Spacecraft Adaptive Sliding Mode Attitude Tracking Control Using DGCMG

    Wang, L. / Zhao, Y.S. / Shi, P. | British Library Conference Proceedings | 2012


    Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode

    Zhang, Jinghui / Zeng, Guoqiang / Gao, Yudong | TIBKAT | 2022