Abstract Organic and inorganic carbon in terrestrial near-surface environments are characterized by a marked difference in their 13 C 12 C ratios which can be traced back in the Earth's sedimentary record over almost 4 billion years. There is no doublt that the bias in favour of 12C displayed by biogenic matter derives, for the most part, from the isotope-selecting properties of the carbon-fixing enzyme (ribulose-1,5-bisphosphate carboxylase) that is operative in the principal photosynthetic pathway and promotes most of the carbon transfer from the non-living to the living realm. Postulating a universality of biological principles in analogy to the proven universality of the laws of physics and chemistry, we may expect enzymatic reactions in exobiological systems to be beset with similar kinetic fractionation effects. Hence, the retrieval from the oldest Martian sediments of isotopic fractionations between reduced and oxidized (carbonate) carbon may substantially constrain current conjectures on the possible existence of former life on Mars.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Stable carbon isotopes: Possible clues to early life on mars


    Beteiligte:

    Erschienen in:

    Advances in Space Research ; 12 , 4 ; 101-110


    Erscheinungsdatum :

    01.01.1991


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch