AbstractThe potential of using outboard horizontal stabilizers (OHS) to reduce aircraft drag, and hence improve fuel economy, was investigated historically, experimentally and theoretically. The feasibility of OHS configurations on the basis of the structural stress levels expected was also studied. The findings of the work showed that from simple, low Reynolds number, wind-tunnel tests, at a wing-chord-based Reynolds number of approximately 6×104 and also from theoretical analyses for a higher Reynolds number of 9×106, lift/drag (L/D) value increases in the region of 40–50% for wing and tail surfaces can be expected relative to corresponding values for conventional aircraft. When account is taken of fuselage and tail-support boom drag, the expected overall L/D increase is in the region of 30–35%. The analytical stress-level work showed that contrary to what, on a first thought basis, might be expected, there were no major stress problems. Flight tests at the University of Calgary, and by others elsewhere, employing radio-controlled, powered, model aircraft (i.e. UAVs) showed that aircraft of the OHS type were easily controlled in flight and were stable. An examination was made of additional areas that may contribute yet further to the development of the OHS concept.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren