AbstractDriving wheels with low-pressure lugged tires are standard propulsion components of wheeled off-road vehicles. Such wheels have been mostly treated in theory as shorter tracks or even as “black boxes”. These procedures, however, appear not to be necessary since an updated theory of thrust generation, based on experiments with double-plate meter, was presented at the 2008 ISTVS Turin conference. This theory is based on the compaction-sliding (CS) concept, which claims that the rearward displacement of soil, a reason for slip, starts as horizontal soil compression by lugs (C-stage at lower thrust), followed by the slide of sheared off soil blocks (S-stage at higher thrust). The thrust in terms of ISTVS Standards equals gross tractive effort minus internal rolling resistance of a tire. The resultant thrust of a tire equals the sum of component thrusts of individual soil segments. The respective technique provides thrust–slip curves, which reflect tire size, loading, inflation pressure and tread pattern design, e.g. tread density, lug angle, pitch, height and tire casing lay-out and thus can be useful notably in assessing the traction properties of new tire designs. Concerning the evaluation of tire traction tests or similar applications, the CS approach offers a simplified version of thrust–slip formula (G-function), which complies with the CS concept and is easy to use.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Thrust and slip of a low-pressure tire on compressible ground by the compression-sliding approach


    Beteiligte:

    Erschienen in:

    Journal of Terramechanics ; 47 , 4 ; 249-259


    Erscheinungsdatum :

    2010-01-11


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch