AbstractAir transportation in the new millennium will require revolutionary solutions to meet public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st century aircraft is to develop propulsion systems that are intelligent, highly efficient, virtually inaudible (outside airport boundaries), and have near zero harmful emissions (CO2 and NOx). This vision includes intelligent engines capable of adapting to changing internal and external conditions to optimally accomplish missions with either minimal or no human intervention. Distributed vectored propulsion will replace current two to four wing mounted and fuselage mounted engine configurations with a large number of small, mini, or micro engines. Other innovative concepts, such as the pulse detonation engine (PDE), which potentially can replace conventional gas turbine engines, also are reviewed. It is envisioned that a hydrogen economy will drive the propulsion system revolution towards the ultimate goal of silent aircrafts with zero harmful emissions. Finally, it is envisioned that electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. This paper reviews future propulsion and power concepts that are under development at the National Aeronautics and Space Administration's (NASA) John H. Glenn Research Center at Lewis Field, Cleveland, Ohio, USA.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Propulsion and power for 21st century aviation


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2004-01-01


    Format / Umfang :

    37 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Revolutionary Power and Propulsion for 21st Century Aviation

    Campbell, D. / AIAA / ICAS | British Library Conference Proceedings | 2003