Abstract Multi-target tracking is an important research topic in the field of aerospace. In this paper, a multi-Bernoulli smoother, which consists of forward filtering followed by backward smoothing, is proposed for multi-target tracking. The forward filtering is accomplished by the cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter. For the backward smoothing, the smoothed multi-target probability density is approximated by a multi-Bernoulli density, whose backward recursion is derived by using finite set statistics. To solve the computational problem of multiple integrals in the smoother, a sequential Monte Carlo method is also proposed. Experimental results show that the proposed smoother improves the estimation accuracy of target number and target states over the CBMeMBer filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Bernoulli smoother for multi-target tracking


    Beteiligte:
    Li, Dong (Autor:in) / Hou, Chenping (Autor:in) / Yi, Dongyun (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2015-11-17


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Multisensor Poisson Multi-Bernoulli Filter for Joint Target–Sensor State Tracking

    Frohle, Markus / Lindberg, Christopher / Granstrom, Karl et al. | IEEE | 2019



    Multi-Sensor Joint Detection and Tracking with the Bernoulli Filter

    Ba Tuong Vo, / Chong Meng See, / Ning Ma, et al. | IEEE | 2012