Highlights Proposing an analytical near-optimum solution approach to a joint vehicle trajectory and signal timing optimization problem. Analytical construction of near-optimum multi-trajectories. Considering macroscopic fuel consumption function consideration. Proposing theoretical properties into problem structure and analytical solution formulation. Conducting numerical examples for multiple types of conflict points.

    Abstract Traffic conflict points (e.g., intersections, work-zones) cause travel delay, stop-and-go traffic, and excessive energy consumption. Efforts have been taken to improve traffic conflict point performance via trajectory control of connected automated vehicles (CAV) as the CAV technology emerges. One major challenge to these efforts is the complexity in optimization of CAV trajectories, particularly with joint signal timing optimization. This challenge poses barriers to real-time application requirements, scaling them up to address network level problems and drawing analytical insights into problem structures. To overcome this challenge, this paper aims to seek for an efficient and analytical solution to a joint vehicle trajectory and signal timing optimization problem. This problem simultaneously optimizes CAV trajectories and signal timing to minimize travel delay and energy consumption at a conflicting point with two traffic approaches. This study modifies the original complex formulation in two ways. First, the vehicle trajectory shape is simplified into a piece-wise quadratic function with no more than five segments. Second, instead of using the highly non-linear instantaneous fuel consumption function, a simplified macroscopic measure is proposed to approximate fuel consumption as an analytical quadratic function of signal red interval. These simplifications provide elegant theoretical properties that enable solving an analytical exact solution to this complex problem with parsimonious analytical insights. Numerical examples reveal that the proposed model can significantly reduce travel delay and fuel consumption. Moreover, it is demonstrated that the presented algorithm is highly efficient and appropriate for real-world traffic applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An analytical optimization approach to the joint trajectory and signal optimization problem for connected automated vehicles


    Beteiligte:
    Soleimaniamiri, Saeid (Autor:in) / Ghiasi, Amir (Autor:in) / Li, Xiaopeng (Autor:in) / Huang, Zhitong (Autor:in)


    Erscheinungsdatum :

    2020-08-10




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Corridor level cooperative trajectory optimization with connected and automated vehicles

    Yu, Chunhui / Feng, Yiheng / Liu, Henry X. et al. | Elsevier | 2019



    Platooning Trajectory Optimization for Connected Automated Vehicles in Coordinated Arterials

    Guerra, Agustin / Elefteriadou, Lily | Transportation Research Record | 2022


    Eco-Driving System for Connected Automated Vehicles: Multi-Objective Trajectory Optimization

    Yang, Xianfeng Terry / Huang, Ke / Zhang, Zhehao et al. | IEEE | 2021


    DECOUPLED COOPERATIVE TRAJECTORY OPTIMIZATION FOR CONNECTED HIGHLY AUTOMATED VEHICLES AT URBAN INTERSECTIONS

    Krajewski, R. / Themann, P. / Eckstein, L. | British Library Conference Proceedings | 2016