Highlights This study presents a signal optimization model for scooter-mixed traffic arterials. Scooters’ unique filtering behavior has been accounted for using a sub-lane concept. Scooters will affect the propagation of the arterial's mixed traffic patterns. The design of signal shall consider the interactions between scooters and cars.

    Abstract Recognizing the increasing popularity of scooters among urban commuters in developing countries and the significant impacts of their dynamic maneuverability on the progression of mixed traffic, this study presents a simulation-based signal optimization model for arterials experiencing heavy scooter-vehicle flows. The proposed model consists of a macroscopic simulation and a signal optimization module, where the former functions to capture the interactions between scooter and passenger-car flows over the process of discharging, propagation, and formation of intersection queues. The latter offers a specially-designed algorithm to search for the optimal signal plan and arterial offsets, based on the complex departure and arrival patterns of mixed flows estimated with the simulation module. To account for scooters’ unique parallel moving and queue patterns in a travel lane, the proposed signal module has adopted the sub-lane concept in estimating the mixed-flow queue distribution across lanes and their discharging flow rates. The results of extensive experimental analyses with various mixed-flow scenarios confirm that the proposed model offers the potential for signal design for arterials plagued by heavy scooter-vehicle mixed flows.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing signals for arterials experiencing heavy mixed scooter-vehicle flows


    Beteiligte:
    Lan, Chien-Lun (Autor:in) / Chang, Gang-Len (Autor:in)


    Erscheinungsdatum :

    2016-09-24


    Format / Umfang :

    20 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch