Abstract Influences of initial launch conditions on flight performance are addressed for the high altitude balloon ascending process. A novel dynamic model was established to describe thermodynamic and kinetic characteristics of balloon which consists of atmospheric, thermal and dynamic submodels. Based on the model, ascending processes of a high altitude balloon under different initial launch conditions were simulated. The initial launch conditions were classified into three types: inflating quantity, launch time and launch position. The ascending velocity and the differential pressure were defined and used as evaluation parameters of flight performance. Results showed that the inflating quantity is the most effective factor for ascending process, and the upper and lower limits were also proposed separately from safety and performance perspectives. For both launch time and launch location conditions, different solar radiation is the main effect approach during ascending process. Specifically, the influence mechanism of launch time in one day and launch longitude are completely identical due to the Earth’s rotation. Results also showed that the sunset process is the optimal selection for safety of balloon and efficient utilization of solar energy. Due to the Earth’s revolution, the influence mechanism of launch date and launch latitude are identical and the effects are more seasonal and less effective. Launch time and location should be considered comprehensively in practical operation of ballooning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Influences of initial launch conditions on flight performance of high altitude balloon ascending process


    Beteiligte:
    Zhang, Yi (Autor:in) / Liu, Dongxu (Autor:in)

    Erschienen in:

    Advances in Space Research ; 56 , 4 ; 605-618


    Erscheinungsdatum :

    2015-04-27


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch








    Elijah High Altitude Balloon Launch Team 2012-2013

    Capek, Tyler / Oliphant, Richard / Turner, Devin et al. | TIBKAT | 2013

    Freier Zugriff