AbstractThis paper analyzes several mission capabilities to deflect Earth-crossing objects (ECOs) using a conceptual future spacecraft with a power limited laser ablating tool. A constrained optimization problem is formulated based on nonlinear programming with a three-dimensional patched conic method. System dynamics are also established, considering the target ECO’s orbit as being continuously perturbed by limited laser power. The required optimal operating duration and operating angle history of the laser ablating tool are computed for various types of ECOs to avoid an Earth impact. The available final warning time is also determined with a given limited laser power. As a result, detailed laser operating behaviors are presented and discussed, which include characteristics of operating duration and angle variation histories in relation to the operation’s start time and target object’s properties. The calculated durations of the optimal laser operation are also compared to those estimated with first-order approximations previous studies. It is discovered that the duration of the laser operation estimated with first-order approximations could result in up to about 50% error if the operation is started at the final warning time. The laser operation should be started as early as possible because an early start requires a short operating duration with a small operating angle variation. The mission feasibility demonstrated in the present study will give various insights into preparing future deflection missions using power limited spacecraft with a laser ablation tool.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mission feasibility analysis on deflecting Earth-crossing objects using a power limited laser ablating spacecraft


    Beteiligte:
    Song, Young-Joo (Autor:in) / Park, Sang-Young (Autor:in) / Choi, Kyu-Hong (Autor:in)

    Erschienen in:

    Advances in Space Research ; 45 , 1 ; 123-143


    Erscheinungsdatum :

    2009-08-27


    Format / Umfang :

    21 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch