AbstractIn this paper, we present a network level model to describe the information propagation in vehicular ad hoc networks (VANETs). The approach utilizes an existing one-dimensional propagation model to evaluate information travel times on the individual arcs of the network. Traffic flow characteristics are evaluated by a static traffic assignment model. Upper and lower bounds are developed for the time of information propagation between two nodes in a network. We show that the bounds yield good (typically within 5%) estimates of the true time lag for the lower penetration rates (<10%), which makes them particularly useful in the initial deployment stages of vehicle-to-vehicle (V2V) communication. Furthermore, our lower bound reveals that – quite surprisingly – for sufficiently low penetration rates, more equipped vehicles on the road does not necessarily promote the fast propagation of information. As an application of the bounds, we formulate a resource allocation model in which communication devices can be installed along roads to promote wireless propagation. A set of efficient heuristic algorithms is developed to solve the resource allocation problem. Numerical results are given throughout.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A static network level model for the information propagation in vehicular ad hoc networks


    Beteiligte:
    Ng, ManWo (Autor:in) / Travis Waller, S. (Autor:in)


    Erscheinungsdatum :

    2010-02-18


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch