Highlights A centralised digital architecture is developed to handle large imbalanced data. A Regional–Convolution Neural Network (R-CNN) model is used to generate conflict data. A Deep Neural Network (DNN) model is employed to predict real-time traffic conflicts. Traffic variables and Safety Surrogate Measures (SSM) are used as inputs to DNN model. This traffic conflict detection technique is suitable for ADAS, CVs and AVs.

    Abstract Recently, technologies for predicting traffic conflicts in real-time have been gaining momentum due to their proactive nature of application and the growing implementation of ADAS technology in intelligent vehicles. In ADAS, machine learning classifiers are utilised to predict potential traffic conflicts by analysing data from in-vehicle sensors. In most cases, a condition is classified as a traffic conflict when a safety surrogate (e.g. time-to-collision, TTC) crosses a pre-defined threshold. This approach, however, largely ignores other factors that influence traffic conflicts such as speed variance, traffic density, speed and weather conditions. Considering all these factors in detecting traffic conflicts is rather complex as it requires an integration and mining of heterodox data, the unavailability of traffic conflicts and conflict prediction models capable of extracting meaningful and accurate information in a timely manner. In addition, the model has to effectively handle large imbalanced data. To overcome these limitations, this paper presents a centralised digital architecture and employs a Deep Learning methodology to predict traffic conflicts. Highly disaggregated traffic data and in-vehicle sensors data from an instrumented vehicle are collected from a section of the UK M1 motorway to build the model. Traffic conflicts are identified by a Regional–Convolution Neural Network (R-CNN) model which detects lane markings and tracks vehicles from images captured by a single front-facing camera. This data is then integrated with traffic variables and calculated safety surrogate measures (SSMs) via a centralised digital architecture to develop a series of Deep Neural Network (DNN) models to predict these traffic conflicts. The results indicate that TTC, as expected, varies by speed, weather and traffic density and the best DNN model provides an accuracy of 94% making it reliable to employ in ADAS technology as proactive safety management strategies. Furthermore, by exchanging this traffic conflict awareness data, connected vehicles (CVs) can mitigate the risk of traffic collisions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting real-time traffic conflicts using deep learning


    Beteiligte:
    Formosa, Nicolette (Autor:in) / Quddus, Mohammed (Autor:in) / Ison, Stephen (Autor:in) / Abdel-Aty, Mohamed (Autor:in) / Yuan, Jinghui (Autor:in)


    Erscheinungsdatum :

    2019-12-29




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Predicting Traffic Conflicts for Expressway Diverging Areas Using Vehicle Trajectory Data

    Ma, Yongfeng / Meng, Hongcheng / Chen, Shuyan et al. | ASCE | 2020




    Robust Real-Time Traffic Surveillance with Deep Learning

    Jessica Fernández / José M. Cañas / Vanessa Fernández et al. | DOAJ | 2021

    Freier Zugriff