Abstract Magnetic helicity, an intrinsic property of eruptive helical flux ropes (FRs) forming coronal mass ejections (CMEs), plays an important role in determining CME geoeffectiveness. In the solar atmosphere and heliosphere, helicity remains conserved in a closed volume. Considering this fact as a basis of our study, we perform a quantitative comparison between total magnetic helicity and twisted flux in interplanetary CMEs and those transported to CMEs via magnetic reconnection at low corona. At the source, twisted/poloidal flux ( ϕ pcme ) of CMEs is directly estimated from total reconnection flux, and CME helicity ( H cme ) is obtained by combining reconnection flux information with CME physical parameters. At 1 AU, the twisted/poloidal flux ( ϕ pmc ) and helicity ( H mc ) of CMEs are obtained from in situ observations. Considering uncertainties steaming from FR length, reconnection flux and CME physical parameter estimations, poloidal flux and helicity of CMEs at 1 AU are found to be highly relevant ( ϕ pmc ϕ pcme = 0.4–1.5, H mc H cme = 0.3–1) to low-corona magnetic reconnection at the wake of CMEs. This result remains unchanged despite CME association with pre-existing FRs. We show that a significant reduction in CME helicity during its heliospheric propagation may result from a high rate of FR erosion in the interplanetary medium. Our event analysis confirms that CME’s intrinsic magnetic properties are transported to CME FRs during magnetic reconnection at sheared coronal arcades. A one-to-one correspondence between the chirality of 1-AU CMEs and their pre-eruptive structures complies with the fact that the sense of field line rotations in FRs may remain unchanged during coronal reconnection at the source. By connecting intrinsic magnetic properties of FRs through Sun-Earth medium, this study provides important implications for the origin of geoeffectiveness in CMEs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Uncovering the process that transports magnetic helicity to coronal mass ejection flux ropes


    Beteiligte:
    Pal, Sanchita (Autor:in)

    Erschienen in:

    Advances in Space Research ; 70 , 6 ; 1601-1613


    Erscheinungsdatum :

    2021-11-14


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Active region helicity evolution and related coronal mass ejection activity

    Green, L.M. / López Fuentes, M.C. / Mandrini, C.H. et al. | Elsevier | 2003


    Active Region Helicity Evolution and Related Coronal Mass Ejection Activity

    Green, L. M. / Fuentes, M. C. L. / Mandrini, C. H. et al. | British Library Conference Proceedings | 2003



    Coronal mass-ejection events

    Fisher, Richard R. | Elsevier | 1984