Highlights A multi-ratio linear-fractional 0–1 program is formulated with Discrete choice model. An exact solution approach is provided with strengthened inequalities. A Suggest-and-Improve framework is proposed for large scale problems. A case study is presented based on real big data.

    Abstract One innovative solution to the last-mile delivery problem is the self-service locker system. Motivated by a real case in Singapore, we consider a POP-Locker Alliance who operates a set of POP-stations and wishes to improve the last-mile delivery by opening new locker facilities. We propose a quantitative approach to determine the optimal locker location with the objective to maximize the overall service provided by the alliance. Customer’s choices regarding the use of facilities are explicitly considered. They are predicted by a multinomial logit model. We then formulate the location problem as a multi-ratio linear-fractional 0–1 program and provide two solution approaches. The first one is to reformulate the original problem as a mixed-integer linear program, which is further strengthened using conditional McCormick inequalities. This approach is an exact method, developed for small-scale problems. For large-scale problems, we propose an alternating algorithm, i.e., Quadratic Transform with Linear Alternating (QT-LA). The numerical experiment indicates that QT-LA is an efficient approach that yields high-quality solutions. Finally, we conducted a case study. The results highlighted the importance of considering the customers’ choices. Under different parameter values of the multinomial logit model, the decisions could be completely different. Therefore, the parameter value should be carefully estimated in advance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Last-mile delivery: Optimal locker location under multinomial logit choice model


    Beteiligte:
    Lin, Yun Hui (Autor:in) / Wang, Yuan (Autor:in) / He, Dongdong (Autor:in) / Lee, Loo Hay (Autor:in)


    Erscheinungsdatum :

    2020-08-09




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    The constrained multinomial logit: A semi-compensatory choice model

    Martínez, Francisco | Online Contents | 2009


    The constrained multinomial logit: A semi-compensatory choice model

    Martínez, Francisco | Online Contents | 2009


    The constrained multinomial logit: A semi-compensatory choice model

    Martínez, Francisco / Aguila, Felipe / Hurtubia, Ricardo | Elsevier | 2008


    Bayesian Multinomial Logit

    Washington, Simon / Congdon, Peter / Karlaftis, Matthew G. et al. | Transportation Research Record | 2009