We propose a computationally efficient and numerically reliable algorithm to compute the finite zeros of a linear discrete-time periodic system. The zeros are defined in terms of the transfer-function matrix corresponding to an equivalent lifted time-invariant state-space system. The proposed method relies on structure preserving manipulations of the associated system pencil to extract successively lower complexity subpencils which contains the finite zeros of the periodic system. The new algorithm uses exclusively structure preserving orthogonal transformations and for the overall computation of zeros the strong numerical stability can be proved.
Strongly stable algorithm for computing periodic system zeros
2003 ; Maui, Hawaii (USA)
01.12.2003
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
On computing the zeros of periodic systems
Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2002
|Computing the zeros of periodic descriptor systems
Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2003
|