Predictive Uncertainty during model training can be used to assess wether a sample is correctly annotated or not. To see if this is also possible on remote sensing data, we applied the method on a building segmentation task.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Using Predictive Uncertainty for Cleaning Noisy Annotations


    Beteiligte:

    Kongress:

    2022 ; Jena, Deutschland


    Erscheinungsdatum :

    01.11.2022


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ensemble-Based Semi-Supervised Learning to Improve Noisy Soiling Annotations in Autonomous Driving

    Uricar, Michal / Sistu, Ganesh / Yahiaoui, Lucie et al. | IEEE | 2021


    Data-Driven Robust Predictive Control for Mixed Vehicle Platoons Using Noisy Measurement

    Lan, Jianglin / Zhao, Dezong / Tian, Daxin | IEEE | 2023

    Freier Zugriff

    Towards sparse sensor annotations: Uncertainty-based active transfer learning for airfoil flow field prediction

    ZHANG, Yunyang / ZHENG, Xiaohu / GONG, Zhiqiang et al. | Elsevier | 2024

    Freier Zugriff

    Document sharing with annotations

    SAHGAL ABHINANDAN / HOU JUSTIN ALEXANDER CHI-YOUNG / GUPTA GAURAV et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Model Predictive Capability Assessment under Uncertainty

    Mahadevan, Sankaran / Rebba, Ramesh | AIAA | 2005