We present a numerical approach to evaluate the transfer function matrices of a periodic system corresponding to lifted state-space representations as constant systems. The proposed pole-zero method determines each entry of the transfer function matrix in a minimal zeros-poles- gain representation. A basic computational ingredient for this method is the extended periodic real Schur form of a periodic matrix, which underlies the computation of minimal realizations and system poles. To compute zeros and gains, fast algorithms are proposed, which are specially tailored to particular single-input single-output periodic systems. The new method relies exclusively on reliable numerical computations and is well suited for robust software implementations.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Computation of transfer function matrices of periodic systems


    Beteiligte:
    Varga, Andras (Autor:in)

    Kongress:

    2002 ; Las Vegas (USA)


    Erschienen in:

    Erscheinungsdatum :

    01.07.2002


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Computation of transfer function matrices of periodic systems

    Varga, Andras | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2003

    Freier Zugriff

    Computation of minimal periodic realizations of transfer-function matrices

    Varga, Andras | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2003

    Freier Zugriff


    Transfer Matrices and Statistical Analysis of Sampled-data Systems with Continuous Periodic Processes

    Lampe, B.P. / Rosenwasser, E.N. | British Library Online Contents | 2009


    Computation of Kalman Decompositions of Periodic Systems

    Varga, Andras | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2003

    Freier Zugriff