Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Object recognition in flight: how do Bees distinguish between 3D shapes?


    Beteiligte:

    Erschienen in:

    PLoS One ; 11 , 2 ; e0147106


    Erscheinungsdatum :

    2016


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Can accelerometry be used to distinguish between flight types in soaring birds?

    Williams, H. J. / Shepard, E. L. C. / Duriez, O. et al. | BASE

    Freier Zugriff

    Distinguish between vehicle turn and lane change

    NASERIAN MOHAMMAD / LEWIS ALLAN K | Europäisches Patentamt | 2020

    Freier Zugriff

    DISTINGUISH BETWEEN VEHICLE TURN AND LANE CHANGE

    NASERIAN MOHAMMAD / LEWIS ALLAN K | Europäisches Patentamt | 2019

    Freier Zugriff

    Shape Recognition for Industrial Robot Manipulation with the Bees Algorithm

    Castellani, Marco / Baronti, Luca / Zheng, Senjing et al. | Springer Verlag | 2022


    Figuring heating of blunt shapes in hypersonic flight

    Wing, L.D. | Engineering Index Backfile | 1960