Convolutional Neural Networks (CNNs) are employed to identify wake vortices via their two-dimensional position and circulation strength in Light Detection and Ranging (lidar) measurement scans. A campaign at Vienna International Airport delivered data that so far has only been processed with a traditional lidar processing algorithm, namely the Radial Velocity (RV) method. Its not fully automated nature led to only a fraction of scans from the overall data set to be evaluated. Here we present ways to use CNNs for this task. A scoring algorithm engineered for verifying CNN detections has been implemented. In particular green detections (those marked as correct CNN detections by the scoring algorithm) can confidently be used for further analysis about the wake vortex encounter hazard. With this approach we end up with a significantly more processed and characterized lidar data compared to that so far delivered by the RV method.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Investigating Artificial Neural Networks for Detecting Aircraft Wake Vortices in Lidar Measurements


    Beteiligte:

    Kongress:

    2022 ; Hamburg


    Erscheinungsdatum :

    01.06.2022


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Characterizing Wake Vortices of Landing Aircraft Using Artificial Neural Networks and LiDAR Measurements

    Wartha, Niklas Louis / Stephan, Anton / Holzäpfel, Frank et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2021

    Freier Zugriff

    CHARACTERIZING WAKE VORTICES OF LANDING AIRCRAFT USING ARTIFICIAL NEURAL NETWORKS AND LIDAR MEASUREMENTS

    Wartha, Niklas / Stephan, Anton / Holzäpfel, Frank N. et al. | TIBKAT | 2021


    Characterizing Wake Vortices of Landing Aircraft Using Artificial Neural Networks and LiDAR Measurements

    Wartha, Niklas / Stephan, Anton / Holzäpfel, Frank N. et al. | AIAA | 2021


    Artificial Neural Networks for Individual Tracking and Characterization of Wake Vortices in LIDAR Measurements

    Stephan, Anton / Wartha, Niklas / Holzäpfel, Frank N. et al. | TIBKAT | 2023


    Artificial Neural Networks for Individual Tracking and Characterization of Wake Vortices in LiDAR Measurements

    Stietz, Lars Olaf | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2022

    Freier Zugriff