Height is a key factor in monitoring the growth status and rate of crops. Compared with large-scale satellite remote sensing images and high-cost LiDAR point cloud, the point cloud generated by the Structure from Motion (SfM) algorithm based on UAV images can quickly estimate crop height in the target area at a lower cost. However, crop leaves gradually start to cover the ground from the beginning of the stem elongation stage, making more and more ground points below the canopy disappear in the data. The terrain undulations and outliers will seriously affect the height estimation accuracy. This paper proposed a ground point fitting method to estimate the height of winter wheat based on the UAV SfM point cloud. A canopy slice filter was designed to reduce the interference of middle canopy points and outliers. Random Sample Consensus (RANSAC) was applied to obtain the ground points from the valid filtered point cloud. Then, the missing ground points were fitted according to the known ground points. Furthermore, we achieved crop height monitoring at the stem elongation stage with an R2 of 0.90. The relative root mean squared error (RRMSE) of height estimation was 5.9%, and the relative mean absolute error (RMAE) was 4.6% at the stem elongation stage. This paper proposed the canopy slice filter and fitting missing ground points. It was concluded that the canopy slice filter successfully optimized the extraction of ground points and removed outliers. Fitting the missing ground points simulated the terrain undulations effectively and improved the accuracy.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Ground Point Fitting Method for Winter Wheat Height Estimation Using UAV-Based SfM Point Cloud Data


    Beteiligte:
    Xiaozhe Zhou (Autor:in) / Minfeng Xing (Autor:in) / Binbin He (Autor:in) / Jinfei Wang (Autor:in) / Yang Song (Autor:in) / Jiali Shang (Autor:in) / Chunhua Liao (Autor:in) / Min Xu (Autor:in) / Xiliang Ni (Autor:in)


    Erscheinungsdatum :

    2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Estimating Effective Leaf Area Index of Winter Wheat Based on UAV Point Cloud Data

    Jie Yang / Minfeng Xing / Qiyun Tan et al. | DOAJ | 2023

    Freier Zugriff

    Point cloud-based low-height obstacle detection system

    LIU XIANG / ZHANG SHUANG / ZHU FAN | Europäisches Patentamt | 2022

    Freier Zugriff

    Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field

    Rummelhard, Lukas / Paigwar, Anshul / Negre, Amaury et al. | IEEE | 2017


    A POINT CLOUD-BASED LOW-HEIGHT OBSTACLE DETECTION SYSTEM

    LIU XIANG / ZHANG SHUANG / ZHU FAN | Europäisches Patentamt | 2021

    Freier Zugriff

    Steel rail fitting method based on three-dimensional laser point cloud

    YANG JINGLIN / ZHOU QINGHUA / MA WENJING et al. | Europäisches Patentamt | 2024

    Freier Zugriff