The development of the automatic fare collection (AFC) systems provides significant support for predicting passenger flow on urban rail transit. This paper extracts passenger travel patterns using AFC data on urban rail transit in Chengdu, China, over a one-month period. Passengers are divided into two categories based on their travel habits and data mining models, and multinomial logit (MNL) models are separately used to predict their destinations. Furthermore, a two-way search algorithm is developed to search the optimal paths between origin-destination (OD) pairs by considering interchange constraints. Start a path search through the origin point and destination point, respectively, until the shortest path is found. The maximum effectiveness of a path is measured by travel time, interchange time, and the number of interchanges between the OD pairs. Finally, the validity of the proposed passenger flow path prediction method is verified by using the AFC data of Chengdu metropolitan rail transit from April 2018.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Passenger Flow Path Prediction Based on Urban Rail Transit AFC Data: An Example of Chengdu, China


    Beteiligte:
    Yu Wang (Autor:in) / Qixuan Qin (Autor:in) / Jialiang Chen (Autor:in) / Jiangbo Wang (Autor:in) / Kai Liu (Autor:in)


    Erscheinungsdatum :

    2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Urban rail transit passenger flow prediction method under emergency

    ZHANG WENQIANG / LIU YURAN / ZHANG HANXIAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    OD prediction of urban rail transit passenger flow based on passenger flow trend characteristics

    Wang, Yubian / Liu, Xiang / Alexandrovich, Erofeev Alexander | SPIE | 2023


    Urban Rail Transit Passenger Flow Forecasting - XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | TIBKAT | 2022


    Urban Rail Transit Passenger Flow Forecasting—XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | ASCE | 2022


    Integrated Prediction Model for Urban Rail Transit Station Feeder Passenger Flow

    Junchen DAI / Ping LI / Ying CUI et al. | DOAJ | 2024

    Freier Zugriff